(a+bi)ⁿの規則性

Regularity of the Expansion of (a+bi)ⁿ

千葉県立船橋高等学校理数科3年 井上 竜徳 唐橋 幸佑

目的

複素数の n 乗についてド・モアブルの定理が知られているが、私たちは(a+bi)"を直接展開するこ とによって現れる規則性を探ろうと試みた。

前提

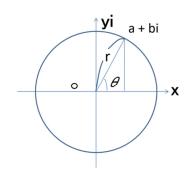
ド・モアブルの定理

複素数平面上において

$$(\cos\theta + i \sin\theta)^n = \cos(n\theta) + i \sin(n\theta)$$
 が成り立つ。

例)図において、

$$a=r\cos\theta$$
 , $b=r\sin\theta$ が成り立つことから 、
$$a+bi=r\left(\cos\theta+i\sin\theta\right)$$
 ∴ $(a+bi)^n=r^n\left\{\cos\left(n\theta\right)+i\sin\left(n\theta\right)\right\}$



考察

n を固定して a, b をそれぞれ変化させたときの規則性を考える。

(i) n = 2のとき、

(a	+	bi) ²	の結果

b1)2	の結果	а					
	n = 2	1	2	3	4	5	
b	1	2i	3+4i	8+6i	15+8i	24+10i	
	2	−3+4i	8i	5+12i	12+16i	21+20i	
	3	-8+6i	−5+12i	18i	7+24i	16+30i	
	4	−15+8i	-12+16i	-7+24i	32i	9+40i	
	5	-24+10i	-21+20i	-16+30i	-9+40i	50i	

- a が 1 増加するにつれて実部が 2a+1 ずつ増加し、虚部が 2b ずつ増加する…①
- b が 1 増加するにつれて実部が 2b + 1 ずつ減少し、虚部が 2a ずつ増加する…②
 - $\mathbf{M}: \mathbf{b} = 1$ と固定した場合、以下のようになる。 (1)

ると、実部 虚部 a = 1 ⇒ 0 a = 2 ⇒ 3
$$(+2 \times 1 + 1)$$
 4 $(+2 \times 1)$ $(+2 \times 1)$

となる。

- ②もこれと同様のことが起こる。
- *ただし、②の場合、虚数単位 i を 2 乗するため(2b + 1)の係数は(-1)となる。 これは、

前ページの表の

- ·a列目の複素数を (a + b₁i)², (a + b₂i)²,…
- ·b 行目の複素数を (a₁ + bi)², (a₂ + bi)², …

と表すと、 $\{a_m + bi\}^2$ と $\{a + b_m i\}^2$ の実部の一般項が2次の関数であることから第1階差数列が等差数列になる。それに対し、虚部の一般項が1次の関数であることから等差数列になる。…③

③ 例1:

 $\{a_m + bi\}^2$ のとき、b = 1 と固定した場合

実部:

$$0, \ 3, \ 8, \ 15, \ 24, \ 35, \ 48, \ 63, \ 80, \ 99, \ \cdots \\ 13, \ 5, \ 7, \ 9, \ 11, \ 13, \ 15, \ 17, \ 19, \ \cdots$$

第1階差数列をとると、公差が2の等差数列になる。

虚部:

2, 4, 6, 8, 10, 12, 14, 16, 18, 20, … 公差が 2 の等差数列である。

例2:

 ${a + b_m i}^2 O$ とき、a = 1 と固定した場合

実部:

第1階差数列をとると、公差が-2の等差数列になる。

虚部:

2, 4, 6, 8, 10, 12, 14, 16, 18, 20, … 公差が 2 の等差数列である。

 $\{a_m + bi\}^2$ と $\{a + b_m i\}^2$ を複素平面上に表したとき、原点からの距離を数列として表すと、第 1 階差数列は公差が 2 の等差数列になる。…④

④ 例:

{ a_m + bi } 2 のとき、b = 1 とした場合、距離は |a + bi |= $\sqrt{(a^2+b^2)}$ より

第1階差数列をとると、公差が2の等差数列になる。

※ここで、登場した公差は2 = 2! = n!と表すことができる。

(ii) n = 3 のとき、

(a + bi)³の結果		の結果	а					
		n = 3	1	2	3	4	5	
		1	-2+2i	2+11i	18+26i	52+47i	110+74i	
		2	-11-2i	-16+16i	-9+46i	16+88i	65+142i	
	b	3	-26-18i	-46+9i	−54+54i	-44+117i	-10+198i	
		4	-47-52i	-88-16i	-117+44i	-128+128i	-115+236i	
		5	-74-110i	-142-65i	-198+10i	-236+115i	-250+250i	

a が 1 増加するにつれて実部が $3a^2 + 3a + 1 - 3b^2$ ずつ増加し、

虚部が 6ab + 3b ずつ増加する…① 7

b が 1 増加するにつれて実部が 6ab + 3a ずつ減少し、

虚部が 3b² + 3b + 1 - 3a²ずつ減少する…②´

- ① $\mathbf{0}$ $\mathbf{0$
 - a を 1 から変化させると、

第 書 1 ⇒ 実部

$$a = 1 \Rightarrow \frac{\cancel{\xi}}{-2}$$
 $a = 2 \Rightarrow \frac{\cancel{\xi}}{2}$ $\{+ (3 \times \cancel{\xi})_2 + 3 \times \cancel{\xi} + 1 - (3 \times \cancel{\xi})_2\}$
 $\{+ (3 \times \cancel{\xi})_2 + 3 \times \cancel{\xi} + 1 - (3 \times \cancel{\xi})_2\}$
 $\{+ (3 \times \cancel{\xi})_2 + 3 \times \cancel{\xi} + 1 - (3 \times \cancel{\xi})_2\}$
 $\{+ (3 \times \cancel{\xi})_2 + 3 \times \cancel{\xi} + 1 - (3 \times \cancel{\xi})_2\}$
 $\{+ (3 \times \cancel{\xi})_2 + 3 \times \cancel{\xi} + 1 - (3 \times \cancel{\xi})_2\}$
 $\{+ (3 \times \cancel{\xi})_2 + 3 \times \cancel{\xi} + 1 - (3 \times \cancel{\xi})_2\}$
 $\{+ (3 \times \cancel{\xi})_2 + 3 \times \cancel{\xi} + 1 - (3 \times \cancel{\xi})_2\}$
 $\{+ (3 \times \cancel{\xi})_2 + 3 \times \cancel{\xi} + 1 - (3 \times \cancel{\xi})_2\}$
 $\{+ (3 \times \cancel{\xi})_2 + 3 \times \cancel{\xi} + 1 - (3 \times \cancel{\xi})_2\}$
 $\{+ (3 \times \cancel{\xi})_2 + 3 \times \cancel{\xi} + 1 - (3 \times \cancel{\xi})_2\}$
 $\{+ (3 \times \cancel{\xi})_2 + 3 \times \cancel{\xi} + 1 - (3 \times \cancel{\xi})_2\}$
 $\{+ (3 \times \cancel{\xi})_2 + 3 \times \cancel{\xi} + 1 - (3 \times \cancel{\xi})_2\}$
 $\{+ (3 \times \cancel{\xi})_2 + 3 \times \cancel{\xi}_1 + 1 - (3 \times \cancel{\xi}_1)_2\}$
 $\{+ (3 \times \cancel{\xi})_2 + 3 \times \cancel{\xi}_1 + 1 - (3 \times \cancel{\xi}_1)_2\}$
 $\{+ (3 \times \cancel{\xi})_2 + 3 \times \cancel{\xi}_1 + 1 - (3 \times \cancel{\xi}_1)_2\}$
 $\{+ (3 \times \cancel{\xi})_2 + 3 \times \cancel{\xi}_1 + 1 - (3 \times \cancel{\xi}_1)_2\}$
 $\{+ (3 \times \cancel{\xi})_2 + 3 \times \cancel{\xi}_1 + 1 - (3 \times \cancel{\xi}_1)_2\}$
 $\{+ (3 \times \cancel{\xi})_2 + 3 \times \cancel{\xi}_1 + 3 \times \cancel{\xi}_1\}_2\}$
 $\{+ (3 \times \cancel{\xi})_2 + 3 \times \cancel{\xi}_1 + 3 \times \cancel{\xi}_1\}_2\}$
 $\{+ (3 \times \cancel{\xi})_2 + 3 \times \cancel{\xi}_1 + 3 \times \cancel{\xi}_1\}_2\}$
 $\{+ (3 \times \cancel{\xi})_2 + 3 \times \cancel{\xi}_1 + 3 \times \cancel{\xi}_1\}_2\}$
 $\{+ (3 \times \cancel{\xi})_2 + 3 \times \cancel{\xi}_1 + 3 \times \cancel{\xi}_1\}_2\}$
 $\{+ (3 \times \cancel{\xi})_2 + 3 \times \cancel{\xi}_1 + 3 \times \cancel{\xi}_1\}_2\}$
 $\{+ (3 \times \cancel{\xi})_2 + 3 \times \cancel{\xi}_1 + 3 \times \cancel{\xi}_1\}_2\}$
 $\{+ (3 \times \cancel{\xi})_2 + 3 \times \cancel{\xi}_1 + 3 \times \cancel{\xi}_1\}_2\}$
 $\{+ (3 \times \cancel{\xi})_2 + 3 \times \cancel{\xi}_1 + 3 \times \cancel{\xi}_1\}_2\}$
 $\{+ (3 \times \cancel{\xi})_2 + 3 \times \cancel{\xi}_1 + 3 \times \cancel{\xi}_1 + 3 \times \cancel{\xi}_1\}_2\}$
 $\{+ (3 \times \cancel{\xi})_2 + 3 \times \cancel{\xi}_1 + 3 \times \cancel{\xi}_1 + 3 \times \cancel{\xi}_1\}_2\}$
 $\{+ (3 \times \cancel{\xi})_2 + 3 \times \cancel{\xi}_1 + 3$

② ′ は実部、虚部でこれと逆のことが起こる。

*ただし、②´の場合、虚数単位 i を 2 乗するため (6ab + 3a) と (3b² + 3b + 1 - 3a²) の係数は (-1) となる (i³ = i² * i = (-1) * i より)。

これは、

(a + bi)³ = {a³ - 3ab²} + {3a²b - b³}i
{ (a + 1) + bi }³ = {a³ - 3ab²
$$+ 3a² + 3a + 1 - 3b²$$
} + {3a²b - b³ $+ 6ab + 3b$ }i
{ a + (b + 1)i}³ = {a³ - 3ab² $- 6ab - 3a$ } + {3a²b - b³ $- 3b² - 3b - 1 + 3a²$ }i
となることからもわかる。

前ページと同様に $(a_m + bi)^3$, $(a + b_m i)^3$ を定めると、 $\{a_m + bi\}^3$ の実部の一般項が 3 次の関数であることから、第 2 階差数列が等差数列になる。それに対し、虚部の一般項が 2 次の関数であることから、第 1 階差数列が等差数列になる。

また、 $\{a + b_m i\}^3$ の実部の一般項が 2 次の関数であるということから、第 1 階差数列が等差数列になる。それに対し、虚部の一般項が 3 次の関数であることから、第 2 階差数列が等差数列になる。 …③ $^{\prime}$

③ ´例1:

 $\{a_m + bi\}^2$ のとき、b = 1 と固定した場合

実部:

第2階差数列をとると、公差が6の等差数列になる。

虚部:

第1階差数列をとると、公差が6の等差数列になる。

例 2:

 $\{a + b_i\}^2$ のとき、a = 1 と固定した場合

実部:

第1階差数列をとると、公差が-6の等差数列になる。

虚部:

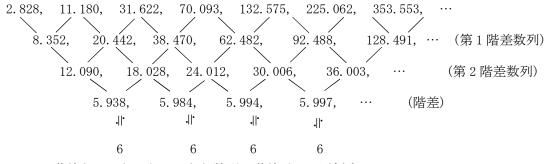
第2階差数列をとると、公差が-6の等差数列になる。

上と同様にして複素数の原点からの距離をとって数列に表すと、第 2 階差数列の階差は 6 に近似する。…④ $^{\prime}$

④ ´例:

 $\{a_m + bi\}^2$ のとき、b = 1 と固定した場合

$$2\sqrt{2}$$
, $5\sqrt{5}$, $10\sqrt{10}$, $17\sqrt{17}$, $26\sqrt{26}$, $37\sqrt{37}$, $1250\sqrt{2}$, … これを小数に直すと、



階差を2回とると、できた数列の階差が6に近似する。

※ここで、登場した階差は6 = 3! = n!と表すことができる。

※④ で求めた第2階差数列の階差は、項数が大きくなればなるほど、6に近づく。

結果

- 1) n を固定し、a を変化させた場合の解の変化量は複素数 $(a + bi)^n$ を二項展開したときの a、b の次数で決まり、解の**実部**を数列で表すと、第($(a \ の最高次数) 1$) 階差数列が公差 $\pm (n!)$ の等差数列となる (\rightarrow 証明. 末尾付録)。b を変化させたときの場合と符合は 3) を用いて判定する。
- 2) n を固定し、a を変化させた場合の解の変化量は複素数(a + bi)ⁿを二項展開したときの a、b の次数で決まり、解の**虚部**を数列で表すと、第((a の最高次数) 2)階差数列が公差±(**n!*b**)の等差数列となる(⇒証明. 末尾付録)。b を変化させたときの場合と符合は 3)を用いて判定する。
 - 3)上記の表での a=b を挟んだ 2 数を考えるとき、n を 4k, 4k+1, 4k+2, $4k+3(k \in \mathbb{N})$ の 4 つに分け、 $(a+bi)^n=(c_1+d_1i)$ 、 $(b+ai)^n=(c_2+d_2i)$ とすると、

$$c_1 = c_2, d_1 = -d_2$$

(
$$ii$$
)n = 4k + 1のとき、

$$c_1 = d_2, d_1 = c_2$$

$$(iii)$$
n = 4k + 2のとき、

$$c_1 = -c_2, d_1 = d_2$$

$$(iv)_n = 4k + 3 のとき、$$

$$c_1 = -d_2, d_1 = -c_2$$

4) n を固定し、a、b を変化させた場合の解の原点からの距離を数列で表すと、第(n-1)階差数列は公差(n!)の等差数列になる(n)が偶数の場合のみ(n)0、n が奇数の場合は、等差数列にはならないが、第(n-1)階差数列の項差が(n!)に近似する。

結論

 $(a + bi)^n$ を直接展開することによって規則性を見出すことができた。加えて、1)より元の数列の各項の係数で階差数列の公差を表すと、 $(n!) = \Sigma [k=1,n] \{ {}_nC_k*k^n*(-1)^{n+k} \}$ と導ける。

参考文献

www.geisya.or.jp

ja. wikipedia. org

多元連立1次方程式の解法マクロの使い方

(千葉工業大学 工学部 藤井研究室)

付録 証明

1)の証明: (a+bi) n において a の最高次数は n なので、(a+bi) n a を変化させたときに実部を(n-1) 回階差をとる。このとき、公差が(n!)の等差数列になることを証明する。 数列 $\{a_m\}$ を $a_m = Re\{(a+m)+bi\}^n$ とおくと、 $a_m = \sum [k=0, [n/2]] \{ {}_{n}C_{2k}*(a+m)^{n-2k}*(bi)^{2k} \}$ と表せる。 a + m = x と置くと、 $a_m = x^n - {}_nC_2*x^{n-2}*b^2 + {}_nC_4*x^{n-4}*b^4 - \cdots \pm {}_nC_2[n/2]*x^{2[n/2]}*b^{2[n/2]}$ と表せる。 ここで、 a_{m} = a_{m+1} - a_{m} と置く(操作1とする)と、 $a_{m}' = \{(x+1)^{n} - {}_{n}C_{2}*(x+1)^{n-2}*b^{2} + {}_{n}C_{4}*(x+1)^{n-4}*b^{4} - \cdots \pm {}_{n}C_{2\lceil n/2\rceil}*(x+1)^{2\lceil n/2\rceil}*b^{2\lceil n/2\rceil}\}$ - $(x^n - {}_{n}C_2 * x^{n-2} * b^2 + {}_{n}C_4 * x^{n-4} * b^4 - \cdots \pm {}_{n}C_{2\lceil n/2 \rceil} * x^{2\lceil n/2 \rceil} * b^{2\lceil n/2 \rceil})$ このとき、a_{m+1}と a_mの初項にのみ注目すると、 $(x+1)^n - x^n = \sum [k=0, n] \binom{n}{n} \binom{k}{k} x^k - x^n = \sum [k=0, n-1] \binom{n}{n} \binom{k}{k} x^k \cdots$ と変形でき、次数が一つ下がっていることがわかる。 これを a_{m+1} と a_m の他の項にも行うと、同じ次数の x+1 と x の係数は等しいので、x+1 と x の指数が 0 となったときに、末尾の項から打ち消しあう。 このとき、操作1をn回行うので、(x+1)ⁿと xⁿの階差数列のみを議論する。 数列 $\{d_m\}$ を $d_m = x^n$ とおく。 ここで、{d_m}で操作1を行うと、①より $d_{m}' = (x+1)^{n} - x^{n} = \sum [k=0, n-1] ({}_{n}C_{k}*x^{k})$ 次に、 $\{d_m'\}$ で操作1を行うと、 d_{m} ' ' = $\sum [k=0, n-1] \{ {}_{n}C_{k}*(x+1)^{k} \} - \sum [k=0, n-1] ({}_{n}C_{k}*x^{k})$ k=0 の時は、 $_{n}C_{k}$ - $_{n}C_{k}$ = 0 より、 $d_{m}' = \sum [k=1, n-1] \{ {}_{n}C_{k}*(x+1)^{k} \} - \sum [k=1, n-1] ({}_{n}C_{k}*x^{k}) = \sum [k=1, n-1] [{}_{n}C_{k}*\{(x+1)^{k} - x^{k}\}]$ ①より、 d_{m} , $\Sigma [k=1, n-1] \{ {}_{n}C_{k} * \Sigma [p=0, k-1] ({}_{k}C_{n} * X^{p}) \}$ これより、操作1を1度行うと、末端にあるxの累乗が d_m 'になり、それぞれの Σ の初項が打ち消さ れることがわかる。 dmの状態から操作1をn回行うと $d_{m}^{(n)} = \sum [k=n-1, n-1] \left({}_{n}C_{k} * \sum [p=n-2, k-1] \left({}_{k}C_{p} * \sum [q=n-3, p-1] \left({}_{p}C_{q} \cdots * \sum [z=n-n, y-1] \left({}_{v}C_{z} * x^{z} \right) \right) \right)$ $= \sum \left[k=n-1, n-1\right] \left({}_{n}C_{k} * \sum \left[p=n-2, n-2\right] \left({}_{n-1}C_{b} * \sum \left[q=n-3, n-3\right]_{n-2}C_{q} * \cdots * \sum \left[z=n-n, n-n\right] \left({}_{n-n+1}C_{z} * x^{z}\right)\right)\right)$ $d_{m}^{\;(n)} \; = \; {}_{n}C_{n-1} \; * \; {}_{n-1}C_{n-2} \; * \; {}_{n-2}C_{n-3} \; * \; \cdots \; * \; {}_{2}C_{1} \; * \; {}_{1}C_{0} = \; n \, !$ 最後に、 $d_{m}^{(n)} = d_{m+1}^{(n-1)} - d_{m}^{(n-1)}$ となる $\{d_{m}^{(n-1)}\}$ は $\{a_{m}\}$ の第(n-1)階差数列である。 よって、 $\{a_m\}$ の第(n-1)階差数列は公差(n!)の等差数列になる。 2) **の証明**: (a+bi)ⁿの b を変化させたときに実部を(n-2) 回階差をとると、公差が(n!*b) の等差数列に なることを証明する。 1)の証明と同様にして、数列 {a_w} を a_w = Im{(a+M)+bi}ⁿとおくと、 $a_M = \sum [k=0, [(n-1)/2]] \{ {}_{n}C_{2k+1}*(a+M)^{n-2k-1}*(bi)^{2k+1} \}$ と表せる。 a + M = X と置くと、a_мも初項が n*Xⁿ⁻¹*b となるため、実数の時と同様にして、 $d_{M}^{(n-1)} =$ $n \sum [k=n-2, n-2] \left({_{n-1}C_k} * \sum [p=n-3, n-3] \left({_{n-2}C_p} * \sum [q=n-4, n-4]_{n-3}C_q * \cdots * \sum [z=n-n+1, n-n+1] \left({_{n-n+2}C_z} * X^z \right) \right) \right)$ = $n *_{n-1}C_{n-2} *_{n-2}C_{n-3} * \cdots *_{2}C_{1} *_{b} = n!*_{b}$ 最後に、 $d_{M}^{(n)} = d_{M+1}^{(n-1)} - d_{M}^{(n-1)}$ となる $\{d_{M}^{(n-1)}\}$ は $\{a_{M}\}$ の第(n-2)階差数列である。

よって、 $\{a_M\}$ の第(n-2)階差数列は公差(n!*b)の等差数列になる。